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Skyline Query With Strong Security
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Abstract— It has been witnessed that Aggregate Reverse Sky-
line (ARS) query has recently received a wide range of practical
applications due to its marvelous property of identifying the
influence of query requests. Nevertheless, the query users may
hesitate to participate in such query services as the query
requests and query results may leak sensitive personal data or
valuable business data assets to the service providers. To tackle
the concerns, a promising solution is to encrypt the query
requests, conduct the ARS queries over encrypted query requests
without decrypting, and return the encrypted query results.
Unfortunately, many existing solutions are either deployed over
a two-server model or unable to fully preserve query privacy.
In this paper, we propose a novel privacy-preserving aggregate
reverse skyline query (PPARS) scheme on a single server model
while ensuring full query privacy. Specifically, we first transform
the problem of ARS query into a combination of set membership
test and logical expressions. Then, by employing the prefix encod-
ing technique, bloom filter technique, and fully homomorphic
encryption, we run the transformed logical expressions to obtain
the encrypted aggregate values without leaking query requests,
query results, and access patterns. Furthermore, we propose an
interpolation-based packing technique to improve the communi-
cation efficiency of PPARS. Detailed and formal security analysis
demonstrates that our proposed schemes can guarantee strong
security. In addition, extensive experiments are conducted, and
the results validate the efficiency of our proposed schemes.

Index Terms— Aggregate reverse skyline, privacy preservation,
single server model, bloom filter, Lagrange interpolation.

I. INTRODUCTION

AS a powerful tool for multicriteria data analysis, data
mining, and decision making, the skyline query and its

variants can return a set of interesting points that are the
best trade-offs among the different dimensions of a huge data
space [1], [2]. Among various skyline queries, the reverse sky-
line query has been widely applied to real-world applications,
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TABLE I

THREE POSSIBLE CHOICES FOR THE MANUFACTURER

such as business location planning [3], environmental monitor-
ing [4], and marketing insights [5], due to its unique practical
significance. Specifically, the reverse skyline can identify the
influence of a query request on a multi-dimensional dataset,
i.e., how many data points in the dataset are interesting in the
query request [6]. Two typical examples of the reverse skyline
query are shown as follows.

Example 1. A computer manufacturer plans to design a
new type of computer, and he/she has several possible choices
in some configuration parameters for the new computer.
In Table I, we give an example with three possible choices
in the parameters of price, size, and storage. Assume that
a dealer has a database of customers’ preferences about
computers. By providing these choices (query requests) to the
dealer, the computer manufacturer wants to know a set of
parameters that attracts the maximum number of customers
(largest influence) as the forthcoming computer’s parameters.

Example 2. A more commonplace example is that a tourist
plans to visit a city and has several potential hotels to choose
from. The tourist can provide these hotels’ locations (query
requests) to a POI (points of interest) database owner and
choose a hotel that can maximize the number of POI, such as,
tourist attractions and restaurants.

In the above examples, the most influential query requests
can be obtained by launching the reverse skyline query that
can find the data points (in a database) “attracted” by a query
request [3]–[6]. After aggregating the number of attracted
data points for different query requests, it is easy to deter-
mine the most influential query request. We formally define
the (aggregate) reverse skyline query in Section III-A and refer
readers to that section for the details. To illustrate the aggregate
characteristic of the reverse skyline query, we use the concept
of the aggregate reverse skyline (ARS) query hereinafter.

In practical applications, the databases in the above exam-
ples are usually owned by some big companies, e.g., the
POI database owned by Yelp, and these companies (service
providers) can provide the query services (ARS query services)
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to the query users (computer manufacturers or tourists). How-
ever, the query users may hesitate to participate in such query
services due to the privacy concerns regarding the query
requests and query results. In the aforementioned examples,
the computer parameters are valuable business data assets to
the computer manufacturer, while the hotel locations may
leak the query users’ final locations. A promising solution
is to encrypt query requests, make the service providers
perform ARS queries without decrypting the query requests,
and obtain the encrypted query result at the end. But that
is not enough, since the service providers have databases in
plaintexts, we must hide access patterns when performing the
queries. Otherwise, the service providers can infer the query
requests and query results by comparing the relations between
the query results and the owned data points (see detailed
analysis in Section IV-A). Here, we define the access pattern as
the information about which data points are selected as reverse
skyline points. However, when conducting the ARS search,
we have to run a compute-then-compare operation, which
is challenging to be achieved over encrypted data. In order
to address this challenge, existing schemes either adopt a
two-server model [7]–[9] or lower the security level, e.g.,
leaking order relations [10] or access patterns [11]. However,
in our scenario: i) the proposed scheme needs to be run in
a single server model due to the practical considerations; ii)
the proposed scheme must ensure that no information, which
is relevant to the query requests, is leaked. Thus, it is quite
challenging to achieve the ARS query in a single server model
while providing strong security, i.e., protecting the privacy of
query requests, query results, and access patterns.

Aiming at the above challenge, in this paper, we propose
a privacy-preserving ARS query scheme that can ensure full
query privacy with a single service provider. The key point
to address this challenge is that we transform the problem
of the ARS query into a combination of set membership
test and logical expressions. See detailed transformation in
Section IV-A. With this knowledge, instead of encrypting the
query request directly, we first convert it into bloom filters
by using a prefix encoding technique [11] and then encrypt
the elements in the bloom filters with a fully homomorphic
encryption (FHE) scheme [12], [13]. Consequently, we can
determine whether a value is in a set or not by performing
multiplications over FHE encrypted elements. If the under-
lying plaintext of the result is 1, it means that the value is
in the set. Otherwise, the result is 0, indicating the value is
not in the set. Afterward, by running the logical expressions
over FHE encrypted data, we can obtain an encrypted flag
to identify whether a data point is a reverse skyline point.
If yes, the underlying plaintext is 1. Otherwise it is 0. Finally,
by using the addition homomorphic property of FHE, it is easy
to obtain the number of reverse skyline points. Specifically, the
main contributions of this paper are three folds as follows.
• First, we propose a novel privacy-preserving ARS query

scheme (PPRAS) in a single server model, which can preserve
the privacy of query requests, query results, and access pat-
terns. To achieve it, we carefully design an approach that can
convert the ARS query into set membership test and logical
expressions. By employing the prefix encoding technique,

Fig. 1. System model under consideration.

bloom filters, and homomorphic properties of FHE, we can
obtain the encrypted query results while hiding access patterns.
Note that it is a general approach and can be used to support
other privacy-preserving dynamic skyline queries [7]–[9] in
such a scenario. To the best of our knowledge, we are the first
to consider the privacy-preserving ARS queries in a single
server model while providing strong security.
• Second, we propose an interpolation-based packing tech-

nique to improve communication efficiency. To reduce the
number of encrypted data items delivered from the query
user to the service provider, we elaborately design a Lagrange
interpolation-based approach to pack several ciphertexts into
one, thus improving communication efficiency. We denote the
communication-efficient scheme as CE-PPARS.
• Third, we formally prove the security of our schemes

in the real/ideal model and demonstrate that our PPARS and
CE-PPARS schemes can indeed achieve our privacy require-
ments. Furthermore, we conduct extensive experiments to
evaluate the performance of our proposed schemes, and the
results validate the efficiency of our proposed schemes.

The remainder of this paper is organized as follows.
In Section II, we introduce our system model, security
model, and design goal. Then, we review the preliminaries
in Section III. After that, we present our privacy-preserving
aggregate reverse skyline query scheme in Section IV, fol-
lowed by security analysis and performance evaluation in
Section V and Section VI, respectively. Finally, we discuss
some related works in Section VII and draw our conclusion
in Section VIII.

II. MODELS AND DESIGN GOAL

In this section, we formalize our system model, security
model, and identify our design goal.

A. System Model

In our system model, we consider a practical and typical
client-server model, which is comprised of two entities: a
powerful server S providing query services and a client C
enjoying services, as shown in Fig. 1.

1) Server S: In our system model, the server S is a prac-
tical service provider, who holds enriched databases and can
provide the ARS query services to users. We assume that S
is equipped with powerful storage and computing resources.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:11:09 UTC from IEEE Xplore.  Restrictions apply. 



2540 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

It is reasonable since: i) some big companies (are also the
data owners) may have their own cloud server platforms, e.g.,
Amazon; ii) some data mining companies prefer to manage
their valuable databases by themselves and build server plat-
forms for providing the query services; and iii) some datasets
are publicly available, e.g., the location keywords data can be
searched on Google map. For ease of description, we use X
to denote a database and say each data record in X has d
dimensions, i.e., X = {xi = (x1

i ,x
2
i , · · · ,xd

i ) | 1 ≤ i ≤ n}.
2) Client C: In our system, the client C is a query user

that can enjoy the ARS query services from the server S.
Specifically, the client C sends k d-dimensional query requests,
i.e., Q = {qi = (q1

i ,q
2
i , · · · ,qd

i ) | 1 ≤ i ≤ k}, to S. After
conducting the aggregate reverse skyline query algorithm in
the server side, S returns k aggregated values {s1, s2, · · · , sk}
to C, each of which represents the number of reverse skyline
points of a query request. Before enjoying the query services,
we assume that the client C needs to register to S for obtaining
query qualification. As this work focuses on secure computing
techniques, we do not consider the authentication and verifi-
cation issues here.

Note that we assume both data records and query requests
are integers. It is reasonable since we can easily convert
non-integer data into non-negative integers [14].

B. Security Model

In our security model, since the client C wants to obtain the
correct query results, it has no motivation to deviate from the
proposed scheme. As a result, we consider C to be honest,
i.e., it will honestly offer the query requests to the server
S. However, in our model, S is considered to be honest-
but-curious [15], [16]. That is, S will faithfully follow the
designed scheme but may be curious to learn the private infor-
mation of C. For example, S may be interested in the query
requests uploaded by C. As shown in Example 1, the business
plans are valuable business secrets for computer manufacturer.
To ensure privacy, the client C can report the encrypted query
requests E(Q) = {E(qt ) = (E(q1

t ), E(q2
t ), · · · , E(qd

t )) | 1 ≤
t ≤ k} to the server S. Nevertheless, S may still attempt
to infer the query requests in the process of performing the
aggregate reverse skyline queries, for example, by analyzing
the relationship between query requests and the owned data
records. Note that, since this work mainly focuses on the
privacy computation, other active attacks, e.g., Denial of Ser-
vice (DoS) attacks, are beyond the scope of this paper, and
will be explored in our future work.

C. Design Goal

In this work, we aim to present privacy-preserving and
efficient ARS query schemes. In particular, the following
objectives should be attained.

1) Privacy Preservation: The fundamental requirement of
the proposed schemes is to protect the privacy of query
requests and query results against the server S. In addition,
it is necessary to hide access patterns, i.e., S has no idea on
which data points are selected as the reverse skyline.

2) Efficiency: It is inevitable that the privacy requirements
will incur additional costs. Therefore, we also aim to minimize
the performance costs when conducting the privacy-preserving
aggregate reverse skyline query schemes.

III. PRELIMINARIES

In this section, we first formally define the aggregate
reverse skyline queries. Then, we introduce fully homomor-
phic encryption and bloom filter techniques, which will be
used in our proposed schemes.

A. Aggregate Reverse Skyline Queries

The reverse skyline query has been extensively studied
in the data mining community due to its wide applications
[3]–[5], [17]. For the skyline computation, the core operation is
to determine the dominance relation between two data records.
Consequently, we will start with the definition of dynamic
reverse dominance.

Definition 1 Dynamic Reverse Dominance: Given two d-
dimensional data records x1, x2 ∈ X and a query request
q in the workplace, x2 dynamically dominates q with regard
to x1, denoted as x2 ≺x1 q, if:

i) ∀i ∈ [1, d]: |xi
2 − xi

1| ≤ |qi − xi
1|;

ii) ∃ j ∈ [1, d]: |x j
2 − x j

1| < |q j − x j
1|.

The definition of Dynamic Reverse Dominance is relative to
that of Dynamic Dominance, which is defined as “x2 dynam-
ically dominates x1 with regard to q, i.e., x2 ≺q x1”. See the
detailed definition of Dynamic Dominance in [9].

Definition 2 Reverse Skyline Query: Given a dataset X
and a query request q, the reverse skyline query returns a
reverse skyline set Sq ⊆ X , where Sq = {xi ∈ X |�x j ∈ X
such that x j ≺xi q}. We call Sq as the reverse skyline of q.

In real-world applications, the reverse skyline query is
used to identify the influence of a query request on a multi-
dimensional database. The larger cardinality of Sq means the
larger influence of the corresponding query request. Although
almost all reverse skyline query works [3]–[6] mentioned
using the cardinality of the reverse skyline set to measure the
influence, there is no explicit definition of it. In this paper,
considering formalization, we define it as the aggregate reverse
skyline query.

Definition 3 Aggregate Reverse Skyline Query:
Given a dataset X and a set of query requests
Q = {qi = (q1

i ,q
2
i , · · · ,qd

i ) | 1 ≤ i ≤ k}, the aggregate
reverse skyline query returns an aggregated set
AS = {si | 1 ≤ i ≤ k}, where si is the number of
reverse skyline points of qi , i.e., si = |Sqi |.

A simple example of the aggregate reverse skyline (ARS)
query is shown in Fig. 2, in which Q = {q1,q2} and
X = {xi | 1 ≤ i ≤ 5}. Fig. 2(a) plots the reverse skyline
query of q1 and shows the dynamic reverse dominance about
x1 and x2. We can see that x1 is not a reverse skyline point
of q1, while x2 is. In Fig. 2, to visually illustrate the absolute
values, we map all points into a new space where the point
xi is the origin. For instance, when checking whether x1 is a
reverse skyline point or not, we map other points into the space
with the origin of x1. As shown in the first figure of Fig. 2(a),
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Fig. 2. Aggregate reverse skyline query example, in which we check whether x1 and x2 are reverse skyline points of q1 and q2, respectively: (a) x1 is not
a reverse skyline point of q1 while x2 is; (b) both x1 and x2 are not the reverse skyline point of q2.

x5 is mapped to x�5. After checking each point in X , we can
obtain Sq1 = {x2,x3,x5}. Similarly, we have Sq2 = {x5} from
Fig. 2(b). As a result, the aggregated set AS is {3, 1}.

B. Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) is a form of encryp-
tion that provides a way to encrypt data while supporting
computations through the encryption envelope [18]. Due to its
nice homomorphic properties, it is widely employed to design
searchable encryption schemes [19]–[21]. In general, an FHE
scheme satisfies the following two homomorphic properties:
i) Homomorphic addition: E(m1) + E(m2) → E(m1 + m2);
ii) Homomorphic multiplication: E(m1)·E(m2)→ E(m1 ·m2),
where m1 and m2 are two plaintexts (usually, they are inte-
gers), and E(m1) and E(m2) are the corresponding cipher-
texts encrypted by the FHE encryption algorithm. Since our
proposed scheme does not depend on a specific FHE scheme,
here, we do not elaborate the FHE algorithms. We refer readers
to [12], [13], [22] for detailed FHE algorithms.

C. Bloom Filter

Bloom filter (BF) is a space- and time-efficient probabilistic
data structure introduced by Burton Bloom [23], which allows
membership queries on a set S. A bloom filter represents
a set of m elements using an array of η bits, denoted as
BF[1], · · · , BF[η]. Initially, all bits {BF[p] | 0 ≤ p ≤ η} in
the array are set to 0. Then, with l independent hash functions
{h1, · · · , hl}, each element x ∈ S is mapped to the array, i.e.,
BF[hi (x)] = 1. Given an element x�, to answer a query about
whether x� ∈ S or not, one can check whether all BF[hi (x�)]
are set to 1. If not, x� is not a member of S. If yes, x� is in
S with a high probability. Obviously, a bloom filter may yield
false positive, and the false positive probability is:

f p =
�

1− (1− 1/η)lm
�l ≈ (1− e−l m

η )l . (1)

Given m and η, the value of l that minimizes the false positive
probability is: l = ln 2 · (η/m). In this case, f p ≈ (1/2)l ≈
(0.6185)η/m. In our proposed schemes, f p and m will be
given. After computing l = − log2 f p , we can determine the
size of the bloom filter array as η = �l ·m/ ln 2�, which is the
minimum size to ensure the false positive that is less than f p .

IV. OUR PROPOSED SCHEME

In this section, we first analyze the problem of ARS query
over plaintexts. Then, we design a novel secure scheme to
check the dynamic reverse dominance relation, denoted as
SDRD, which is the core component in the ARS query. After
that, we propose our privacy-preserving ARS query scheme,
PPARS. Finally, we present a communication-efficient PPARS
scheme, denoted as CE-PPARS.

Algorithm 1: ARS Query Over Plaintexts
Input: A d-dimensional dataset X = {xi | 1 ≤ i ≤ n}; A set of query

points Q = {qt | 1 ≤ t ≤ k}.
Output: A set containing k aggregated values, AS.

1: AS← ∅;
2: for each query point qt ∈ Q do
3: Sqt ← ∅;
4: for each data point xi ∈ X do
5: δ ← false;
6: for x j ∈ X and x j �= xi do
7: if x j ≺xi qt then �Definition 1
8: δ ← true;
9: break;

10: if δ = false then
11: Sqt .add(xi );
12: AS.add(|Sqt |);

return AS.

A. Analyzing ARS Queries

Based on the definitions in Section III-A, we can formally
present the ARS query over plaintexts in Algorithm 1, in which
the inputs are a dataset X and a query set Q, and the output
is an aggregated set AS. By analyzing this algorithm, it is
easy to identify that the block of lines 7-9 is the core part
of the algorithm. This block is to check the dynamic reverse
dominance relation among x j , xi , and qt , i.e, whether x j ≺xi

qt holds. If yes, it makes δ be true, otherwise false.
Fig. 3(a) depicts the logical expression of determining a

dynamic reverse dominance relation. We can see that deter-
mining dynamic reverse dominance is a typical compute-
then-compare operation, which is hard to be achieved: i)
over encrypted data; ii) on the single server model; and iii)
without leaking any predicate or access pattern information
to the server. Existing approaches either deploy a two-server
model [7]–[9] or leak predicate or access pattern informa-
tion [10], [11]. In our model, our goal is to protect the query
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Fig. 3. Logical expressions of dynamic reverse dominance, where Bool(predicate) returns 1 (true) if predicate holds, otherwise returns 0 (false).

set Q and query result AS against the single server S. As a
result, the query set Q will be encrypted before sending it
to the server S, and the ARS query will be conducted over
encrypted Q. Finally, S obtains and returns the encrypted
query result AS to the client C. In addition, in the process
of performing ARS queries, we cannot leak any predicate
results or access patterns to the server S, e.g., the information
about whether the variable δ in Algorithm 1 is true or not.
That is because if S knows such information, he/she can infer
the query requests qt ∈ Q according to the dataset X and
the leaked information. We show a more concrete example as
follows:

Example 3. Assume S knows that “δ= false”, which is from
the predicate information about “|xi

2−xi
1| ≤ |E(qi

t )−xi
1| does

not hold”. In this way, S can easily infer that qi
t must fall

inside the range of [xi
1−xi

2,x
i
1+xi

2]. Therefore, although qi
t

is encrypted, S can still infer its approximate value according
to xi

1, xi
2 and the predicate information.

Thus, the main challenge in the privacy-preserving ARS
query is to design a secure dynamic reverse dominance scheme
over the single server model while preserving the privacy of
query requests, including the privacy of predicate results (order
comparison results) and access patterns (whether a data points
is added into Sqt , i.e., whether it is a reverse skyline point).

B. Secure Dynamic Reverse Dominance Scheme

Given two data records {x1,x2} and a query request q,
our secure dynamic reverse dominance scheme, SDRD, can
determine whether x2 ≺x1 q holds or not. If yes, it outputs
E(δ) = E(1), otherwise E(δ) = E(0). The basic idea of
our SDRD scheme is to achieve the logical expression over
encrypted data, as shown in Fig. 3(b). Assume we have
obtained E(αi ) = E(1) when |xi

2 − xi
1| ≤ |E(qi ) − xi

1|
holds, otherwise E(αi ) = E(0). Since E(αi ) ∧ E(α j ) =
E(αi ) · E(α j ), i, j ∈ [1, d], we have E(δ1) = �d

i=1 E(αi ).
Besides, if we define E(β i ) = E(1) when |xi

2 − xi
1| <

|E(qi )−xi
1| holds, otherwise E(β i ) = E(0), we can get E(δ2)

by repeatedly computing E(β i ) ∨ E(β j ) = E(β i ) + E(β j )−
E(β i ) ·E(β j ), i, j ∈ [1, d]. Obviously, computing E(δ2) is not
efficient. As a result, different from the above definition of
E(β i ), we assume E(β i ) = E(0) when |xi

2−xi
1| < |E(qi )−xi

1|
holds, otherwise E(β i ) = E(1). In this way, we can easily cal-
culate E(δ2) = E(1)+�d

i=1 E(β i ) ·E(−1) = E(1−�d
i=1 β i )

with the homomorphic properties of FHE. Thus, we have the

following equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E(δ)= E(δ1) ∧ E(δ2) = E(δ1) · E(δ2)= E(δ1 · δ2);
E(δ1)= E(α1) ∧ E(α2) ∧ · · · ∧ E(αd ) = E(

d	
i=1

αi );

E(δ2) = E(β1) ∨ E(β2) ∨ · · · ∨ E(βd ) = E(1−
d	

i=1

β i ).

(2)

Next, the problem is how to make E(αi ) = E(1) (resp.
E(β i ) = E(0)) when |xi

2 − xi
1| ≤ |E(qi ) − xi

1| (resp. |xi
2 −

xi
1| < |E(qi ) − xi

1|) holds, otherwise E(αi ) = E(0) (resp.
E(β i ) = E(1)). Our key idea is to transform the compute-
then-compare operation into set membership test, allowing us
to make it possible in a single cloud server while ensuring full
query privacy.

1) Prefix Encoding Technique: Before delving into the
transformation, we first introduce a prefix encoding tech-
nique [11] to check whether a value v falls inside a range
R, i.e., v ∈ R. Given a range R = [rmin, rmax], where rmin

and rmax are two integers with φ bits, we encode it into G(R)
by extracting the minimum set of prefix elements that cover
the range [rmin, rmax]. For example, if R = [0, 6] and φ = 3,
we have G([0, 6]) = {0 ∗ ∗, 10∗, 110}, as illustrated in Fig. 4.
As demonstrated in [24], the number of prefix elements is at
most 2φ − 2. Given a φ-bit integer v and its binary format
v1v2 · · · vφ , we encode it into a set F(v) with φ+1 elements,
where F(v) = {v1v2 · · · vφ, v1v2 · · · vφ−1∗, · · · , v1 ∗ · · · ∗, ∗ ∗
· · · ∗}, namely, the i -th prefix element is v1v2 · · · vφ−i+1∗· · · ∗.
For example, the integer 5 can be encoded into F(5) =
{101, 10∗, 1 ∗ ∗, ∗ ∗ ∗}. After encoding the value v and the
range R, we have

v ∈ R ⇔ F(v) ∩ G(R) �= ∅. (3)

In the above example, since F(5) ∩ G([0, 6]) = {10∗} �= ∅,
we have 5 ∈ [0, 6]. The essential reason is that, if v ∈ R,
the prefix family of v1v2 · · · vφ must be one of the elements
covering R. It also indicates that, if v ∈ R, there is only one
common element for F(v) and G(R), i.e., |F(v)∩G(R)| = 1.

2) Transformation From Compute-Then-Compare to Set
Membership Test: Now, we discuss the transformation from
compute-then-compare operation (|xi

2 − xi
1| ≤ |qi − xi

1| and
|x j

2−x j
1| < |q j−x j

1|) into set membership test. First, we have
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Fig. 4. Prefix encoding technique.

the following observation:
|xi

2 − xi
1| ≤ |qi − xi

1| ⇔ (xi
2 − xi

1)
2 ≤ (qi − xi

1)
2

⇔ (xi
2)

2 − 2xi
2x

i
1 ≤ (qi )2 − 2qixi

1

⇔ (xi
2)

2 − (qi )2 − 2xi
1(x

i
2 − qi ) ≤ 0

⇔ (xi
2 − qi )(xi

2 − 2xi
1 + qi ) ≤ 0

(4)

Therefore, checking |xi
2 − xi

1| ≤ |qi − xi
1| is equivalent to

determining whether a value falls inside a range:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

if xi
2 ≥ 2xi

1 ⇒ xi
2 ≤ qi ⇔ xi

2 ∈ [0,qi ];

if xi
2 < 2xi

1 ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(xi
2 ≤ qi ) ∧ 


(2xi
1− xi

2) ≤ qi �
⇔ max(xi

2, 2xi
1− xi

2) ∈ [0,qi ]
(xi

2 ≥ qi ) ∧ 

(2xi

1− xi
2) ≥ qi �

⇔ min(xi
2, 2xi

1− xi
2) ∈ [qi ,Ti ]

(5)

where Ti is the upper bound (domain) of the i -th dimension.
If we encode {[0,qi ], [qi ,Ti ]} into {G([0,qi ]),G([qi ,Ti ])}
and {xi

2, max(xi
2, 2xi

1 − xi
2), min(xi

2, 2xi
1 − xi

2)} into
{F(xi

2),F(max(xi
2, 2xi

1 − xi
2)),F(min(xi

2, 2xi
1 − xi

2))},
respectively, we can convert compute-then-compare operation
into set membership test. i.e.,⎧⎪⎨
⎪⎩

if xi
2 ≥ 2xi

1 : αi = Bool(xi
2 ∈ [0,qi ])

if xi
2 < 2xi

1 : αi = Bool(max(xi
2, 2xi

1 − xi
2) ∈ [0,qi ])

∨Bool(min(xi
2, 2xi

1 − xi
2) ∈ [qi ,Ti ]).

(6)

Next, we can adopt the bloom filter technique to check the
set membership and integrate the FHE scheme to preserve the
query privacy. Specifically, we map each element in G([0,qi ])
into a bloom filter, denoted as BFi

0, and G([qi ,Ti ]) into
another bloom filter, denoted as BFi

T. Then, we encrypt each
element in BFi

0 and BFi
T with fully homomorphic encryption.

We denote the encrypted bloom filters as E(BFi
0) and E(BFi

T).
After that, we can calculate E(αi ) with the encrypted bloom
filters and encoded set F(v), here v ∈ {xi

2, max(xi
2, 2xi

1 −
xi

2), min(xi
2, 2xi

1 − xi
2)}. We denote this calculation

as E(αi ) = Calc
�
E(BFi

π),F(v)
�

, where π = {0, T},
and formally depict the calculation of Calc() in Algorithm 2.

Taking computing E(αi ) under the case of xi
2 ≥ 2xi

1 as an

example, we have E(αi ) = Calc
�
E(BFi

0),F(xi
2)

�
. In partic-

ular, for the u-th element eu in F(xi
2) (1 ≤ u ≤ |F(xi

2)|),
we calculate E(θu) = �l

j=1 E(BFi
0[h j (eu)]), as shown in

line 3. Then, we have E(αi ) = E(θ1)∨ E(θ2)∨ · · · ∨ E(θu)∨
· · · ∨ E(θ|F(xi

2)|). When one of elements in F(xi
2) hits the

Algorithm 2: Calc


E(BF),F(v)

�
Input: An encrypted bloom filter, E(BF), in which BF is mapped

by a set G(R), and R is a range; A set F(v), where v is an
integer.

Output: An encrypted binary flag, E(α).
1: E(α) = E(0)

2: for each element eu ∈ F(v) do
3: E(θu ) =�l

j=1 E(BF[h j (eu )]);
4: E(α) = E(α)+ E(θu );

5: return E(α);

Fig. 5. An example of computing E(αi ) with assumptions: i) qi = 6, xi
2 = 5,

and xi
2 ≥ 2xi

1; ii) two independent hash functions {h1, h2} for BF0.

bloom filter BFi
0 (mapped by G([0,qi ])), αi = 1, otherwise

αi = 0. Since F(xi
2) and G([0,qi ]) only have one common

element when xi
2 ∈ [0,qi ], we can optimize the calculation

of E(αi ) by directly adding E(θu) together, i.e., E(αi ) =�|F(xi
2)|

u=1 E(θu) showing in line 4. Fig. 5 shows an example
of computing E(αi ) with qi = 6 and xi

2 = 5. According to
the property of bloom filter, only F(xi

2) ∩ G([0,qi ]) �= ∅
(with acceptable false positive), we have E(αi ) = E(1).
Since F(xi

2) ∩ G([0,qi ]) �= ∅ ⇔ xi
2 ∈ [0,qi ], we have

E(αi ) = E(1) ⇔ |xi
2 − xi

1| ≤ |qi − xi
1| (when xi

2 ≥ 2xi
1)

according to Eq. (6).
Regarding |x j

2 − x j
1| < |q j − x j

1|, it is equivalent to
checking (xi

2 − qi )(xi
2 − 2xi

1 + qi ) < 0. Since we want to
output 0 if (xi

2 − qi )(xi
2 − 2xi

1 + qi ) < 0, we can transform
it into “(xi

2 − qi )(xi
2 − 2xi

1 + qi ) ≥ 0 ⇔ E(β i ) = E(1)”.
Similarly, we have the following discussions Eq. (7), as shown
at the bottom of the next page, and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if xi
2 ≥ 2xi

1 : β i= Bool(xi
2 ∈ [qi ,Ti ])

if xi
2 < 2xi

1 :
β i=

�
Bool(xi

2 ∈ [qi ,Ti ])∧ Bool((2xi
1− xi

2) ∈ [0,qi ])
�

∨
�

Bool(xi
2 ∈ [0,qi ]) ∧ Bool((2xi

1 − xi
2) ∈ [qi ,Ti ])

�
.

(8)

Since Bool(xi
2 ∈ [qi ,Ti ]) ∨ Bool(xi

2 ∈ [0,qi ]) = 1, we can
simplify Eq. (8) into the following equation according to the
distributive law of logical expressions, Eq. (9), as shown at
the bottom of the next page. Finally, with the same approach
to compute E(αi ), we can also obtain E(β i ) based on Eq. (9).

3) Formal Description of Our SDRD Scheme: Given two
data records {x1,x2} and a query request q, our SDRD

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:11:09 UTC from IEEE Xplore.  Restrictions apply. 



2544 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

Algorithm 3: SDRD Check Algorithm
Input: Two d-dimensional data records, {x1,x2}; A query token of the query

request q, QTq = {E(BFi
0), E(BFi

T) | i ∈ [1, d]};
Output: An encrypted dynamic reverse dominance result, E(δ).

1: for i-th dimension i ∈ [1, d] do
2: if xi

2 ≥ 2xi
1 then

3: build F(xi
2);

4: E(αi )← Calc
�
E(BFi

0),F(xi
2)

�
5: E(βi )← Calc

�
E(BFi

T),F(xi
2)

�
6:

else
7: build F(xi

2), F(2xi
1 − xi

2);
8: if xi

2 ≥ 2xi
1 − xi

2 then

9: E(αi )← Calc
�
E(BFi

0),F(xi
2)

�
10: ∨ Calc

�
E(BFi

T),F(2xi
1 − xi

2)
�

11: E(βi )← Calc
�
E(BFi

T),F(xi
2)

�
12: ∧ Calc

�
E(BFi

0),F(2xi
1 − xi

2)
�

13:

else

14: E(αi )← Calc
�
E(BFi

T),F(xi
2)

�
15: ∨ Calc

�
E(BFi

0),F(2xi
1 − xi

2)
�

16: E(βi )← Calc
�
E(BFi

0),F(xi
2)

�
17: ∧ Calc

�
E(BFi

T),F(2xi
1 − xi

2)
�

18: E(δ)← E(
�d

i=1 αi ) · E(1−�d
i=1 βi );

return E(δ);

scheme can be formally defined as
�

SDRD = {SDRD.Setup,
SDRD.TokenGen, SDRD.Check}.

a) SDRD.Setup(λ): Given a security parameter λ, the
setup algorithm outputs a pair of key (pk, sk) for an
FHE scheme, where pk is the public key, and sk is the
secret key. Then, it chooses l independent hash functions
H = {h1, h2, · · · , hl}.

b) SDRD.TokenGen(q, pk,H): On input of a
d-dimensional query request q, the public key pk,
and a set of hash functions H, the token generation
algorithm outputs E(BFi

0) and E(BFi
T) for the i -th

dimension and takes encrypted bloom filters as the query
token of q, denoted as QTq, i.e., QTq = {E(BFi

0),
E(BFi

T) | i ∈ [1, d]} = SDRD.TokenGen(q, pk,H).
c) SDRD.Check(x1,x2, QTq,H): On input of two

d-dimensional data records {x1,x2}, the query token QTq,
and a set of hash functions H, the SDRD check algorithm
determines whether x2 ≺x1 q or not. If yes, it outputs E(δ) =
E(1), otherwise E(δ) = E(0). Briefly, there are two main steps
for the algorithm: i) calculating E(αi ) and E(β i ) with Calc();
ii) calculating E(δ) according to Eq. (2) after obtaining E(αi )
and E(β i ). The detailed process of the SDRD check algorithm
is shown in Algorithm 3. Note that, in the algorithm, Calc() is
performed following Algorithm 2, the “AND” operation (∧) is
achieved by E(a) ∧ E(b) = E(a · b), and the “OR” operation
(∨) is calculated by E(a) ∨ E(b) = E(a + b−a · b), where
E(a) and E(b) are the returned data of Calc().

C. Our PPARS Scheme

Based on the above SDRD scheme, we present our
privacy-preserving aggregate reverse skyline query (PPARS)
scheme that allows a client C to obtain the aggregated val-
ues from the server S without leaking query requests, query
results, and access patterns. Specifically, our PPARS scheme
mainly includes three phases: i) Query Token Report; ii)
Privacy-Preserving ARS Search; iii) Result Recovery.

1) Query Token Report: Assume a client C has a query set
Q = {qt | 1 ≤ t ≤ k} that contains k query requests. In this
phase, C has the following three steps:

Step-1. The client C employs the SDRD.Setup(λ) algo-
rithm to generate a set of hash functions H and (pk, sk) of
the FHE scheme.

Step-2. For each query request qt ∈ Q, the client C calls
the SDRD.TokenGen(qt , pk,H) algorithm to generate the
corresponding token: QTqt . We define the query token for
the query set Q as QT = {QTqt | 1 ≤ t ≤ k}. To prevent
the server from inferring the query request qt by the size of
bloom filters, C sets all bloom filters to the same size. First,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

if xi
2 ≥ 2xi

1 ⇒ xi
2 ≥ qi ⇔ xi

2 ∈ [qi ,Ti ];

if xi
2 < 2xi

1 ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(xi
2 ≥ qi ) ∧ 


(2xi
1 − xi

2) ≤ qi�
⇔ (xi

2 ∈ [qi ,Ti ]) ∧ 

(2xi

1 − xi
2) ∈ [0,qi ]�

(xi
2 ≤ qi ) ∧ 


(2xi
1 − xi

2) ≥ qi�
⇔ (xi

2 ∈ [0,qi ]) ∧ 

(2xi

1 − xi
2) ∈ [qi ,Ti ]�.

(7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if xi
2 ≥ 2xi

1 : β i = Bool(xi
2 ∈ [qi ,Ti ])

if xi
2 < 2xi

1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

if xi
2 ≥ 2xi

1 − xi
2 :

⇒ β i = Bool(xi
2 ∈ [qi ,Ti ])

∧ Bool((2xi
1 − xi

2) ∈ [0,qi ])
if xi

2 < 2xi
1 − xi

2

⇒ β i = Bool(xi
2 ∈ [0,qi ])

∧ Bool((2xi
1 − xi

2) ∈ [qi ,Ti ]).

(9)
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Algorithm 4: Privacy-Preserving ARS Search
Input: A d-dimensional dataset X = {xi | 1 ≤ i ≤ n}; A query token

QT = {QTqt | 1 ≤ t ≤ k}; A set of hash functions
H; The public key of FHE, pk.

Output: A set containing k encrypted aggregated values,
E(AS) = {E(st ) | 1 ≤ t ≤ k}.

1: E(AS)← ∅;
2: for each token QTqt ∈ QT do
3: E(st )← E(0); �Initialization
4: for each data point xi ∈ X do
5: E( fi ) ← E(1); �Initialization
6: for x j ∈ X and x j �= xi do
7: E(δ) ← SDRD.Check(xi ,x j , QTqt ,H);
8: E( fi ) ← E( fi ) ·



E(1)+ E(−1) · E(δ)

� = E



fi · (1− δ)
�
;

9: E(st )← E(st )+ E( fi ) = E(st + fi );
10: E(AS).add



E(st )

�
;

11: return E(AS).

the client C determines an acceptable false positive probability
f p . Then, C calculates the maximum bit length of the query
request qt , denoted as φmax, and sets the number of elements
mapped to the bloom filters as m = 2φmax − 2. Finally, the
size of bloom filters can be set as η = �l · m/ ln 2�, where
l = − log2 f p .

Step-3. The client C puts the query token QT, the public key
pk, and the hash function set H together, i.e., QT||pk||H, and
reports it to the server S.

2) Privacy-Preserving ARS Search: Upon receiving
QT||pk||H, the server S conducts the ARS search
over the dataset X to obtain k encrypted aggregated
values for QT. The core part of this phase is to use the
SDRD.Check(xi ,x j , QTqt ,H) algorithm to determine the
dynamic reverse dominance relation for each query token
QTqt ∈ QT. We depict the detailed process in Algorithm 4.
For each data point xi ∈ X , the server S checks whether
∃x j ∈ X such that x j dynamically dominates q with regard
to xi , i.e., x j ≺xi q. If yes, our SDRD.Check() algorithm
outputs E(δ) = E(1), otherwise E(δ) = E(0) (see details
in Algorithm 3). Recalling Definition 3, it indicates that if
�x j ∈ X dynamically dominates q with regard to xi , xi

would be a reverse skyline point. Therefore, in Algorithm 4,
we initialize an encrypted flag E( fi ) (line 5) to indicate: i) if
∃x j ∈ X dominates xi , i.e., xi is not a reverse skyline point,
E( fi ) = E(0) due to existing E(1− δ) = E(0); ii) if �x j ∈ X
dominates xi , i.e., xi is a reverse skyline point, E( fi ) = E(1)
as all E(1 − δ) are E(1). Therefore, the server S can obtain
the aggregated reverse skyline query value E(st ) for QTqt

by adding up all E( fi ) (line 9). Finally, the server S sends
E(AS) = {E(st ) | 1 ≤ t ≤ k} to the client C.

3) Result Recovery: After receiving E(AS) = {E(st ) |
1 ≤ t ≤ k} from S, the client C can easily recover
AS = {st | 1 ≤ t ≤ k} by using his/her secret key sk.

a) Support multiple clients: In the above process, we can
see that the key pair (pk, sk) is generated by the client C, and
the server S only needs to know pk for the query request.
If a new client would like to enjoy the privacy-preserving
ARS queries, it can generate its own key pair and send the
corresponding public key to the server S. Since the key pair
is generated by the client, and only the client itself knows

the secret key, our proposed PPARS scheme can support
multiple clients without compromising privacy or incurring
key management issues.

b) Improve computational efficiency: In the
privacy-preserving ARS search phase, the main computational
costs are from the Calc() operation in the SDRD.Check()
algorithm. Since the value of v (v ∈ {xi

2, 2xi
1 − xi

2})
may occur many times in a given dataset, the server S
can build a hash table for a query token QT and store
the result of Calc

�
E(BFi

π),F(v)
�

when performing the
privacy-preserving ARS search, where the key is v||i ||π ,
and the corresponding value is Calc

�
E(BFi

π),F(v)
�

. Thus,
before conducting the Calc() operation, S can first retrieve
the hash table by constructing v||i ||π . If there already exists
the result of Calc

�
E(BFi

π ),F(v)
�

, S can directly use the
result instead of calculating it again.

D. Our CE-PPARS Scheme

In our PPARS scheme, for a query request q, the client C
needs to build QTq = {E(BFi

0), E(BFi
T) | i ∈ [1, d]} and sends

it to the server S. If we suppose each bloom filter has a length
of η, and there are k query requests, the client C would send
2d ·η·k ciphertexts of FHE. To reduce the number of delivered
ciphertexts, we propose a communication-efficient PPARS
scheme, denoted as CE-PPARS. The main idea is to pack
several ciphertexts into one by leveraging the Lagrange poly-
nomial interpolation [25]. Compared to the PPARS scheme,
our CE-PPARS scheme has two differences.

1) Query Token Report Phase: Before encrypting a bloom
filter into its encrypted version, the client C packs w elements
(they are 0 or 1) into one, i.e., converting the bit sequence in
the package into the corresponding integer, as shown in Fig. 6.
After encrypting these packed integers, the client C constructs
new encrypted bloom filters E(BF

i
π) and further generates the

query token QT with these new bloom filters. Finally, the client
C sends QT||pk||H||w to S.

2) Privacy-Preserving ARS Search Phase: Upon receiving
QT||pk||H||w, the server S has the following two steps:

Step-1. With w, S builds 2w − 1 polynomial func-
tions from f00 · · · 01� �� �

w

(x) to f11 · · · 1� �� �
w

(x), each of which is

built by the Lagrange interpolation approach [25] and has
the degree with 2w − 1. To clearly show how to inter-
polate a polynomial function, we take building f1010(x)
in Fig. 6 as an example, which is interpolated at nodes
{(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0),
(9, 0), (10, 1), (11, 1), (12, 0), (13, 0), (14, 1), (15, 1)}. For x
dimension, the nodes’ values are from 0 (resp. 0000) to 15
(resp. 1111). For y dimension, since the subscript of f1010(x)
is 1010, if a node’s x value satisfies 1∗1∗, the corresponding y
value is 1, otherwise it is 0, where ∗ is 0 or 1. In this example,
only 10, 11, 14, 15 have their bit sequences satisfying 1 ∗ 1∗.

Step-2. When conducting Calc
�
E(BF

i
π ),F(v)

�
in the

SDRD.Check() algorithm, the server S first constructs a
temporary bloom filter for each element e in F(v), denoted
as TBF. All elements in TBF are initialized as ∗, which
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Fig. 6. An example of our CE-PPARS scheme, where w = 4, TBF101 indicates the temporary bloom filter for the element 101, and TBF10∗ is for the
element 10∗. We have the same E(θ1) and E(θ2) as that in the example of our PPARS scheme.

means this position is ignored. With H, the server S sets
TBF[hi (e)] = 1, where hi ∈ H. After that, S treats every
w elements in TBF as a group: i) if all elements in the group
are ∗, S directly ignores the group; ii) if there exists 1 in
the group, S needs to retrieve the corresponding polynomial
for the group by matching the group’s bit sequence (replacing
∗ with 0) to functions’ subscripts. In Fig. 6, as the second
group in TBF10∗ is 1 ∗ 1∗, we make f1010(x) be the group’s
polynomial function to calculate E(θ2). It is worth noting,
since a polynomial function is composed of addition and
multiplication, we can use the homomorphic properties of FHE
to calculate the polynomial function over ciphertexts. In this
example, we have E(θ2) = E(1), as E(θ2) = f1010(E(10)) =
E( f1010(10)), in which f1010(x) must go through the node
(10, 1). Afterward, the server S can use the same approach of
our PPARS scheme to calculate E(AS).

Compared with the PPARS scheme, our CE-PPARS scheme
packs w elements into one for the encrypted bloom filters.
In the privacy-preserving ARS search phase, the key difference
between these two schemes is to calculate E(θ) for each
element e in F(v). As a result, the correctness of CE-PPARS
is equivalent to proving E(θ) = E(1) if e ∈ G(R).

a) Correctness: We say our CE-PPARS scheme is correct
if existing F(v)’s element e ∈ G(R), we have E(θ) = E(1),
otherwise E(θ) = E(0).

Proof: In our CE-PPARS scheme, after mapping G(R)
into BF, we will first encrypt it into E(BF) and then generate
E(BF) by packing w elements into one. If we assume E(gt),
where t ∈ [1, n] is the t-th group of E(BF) and n is the number
of groups, we have E(θ) =�n

t=1 fzw−1···z1z0(E(gt )). Given an
element e in F(v), if e ∈ G(R), we have BF[hi (e)] = 1 for
each hi ∈ H. It means, for each group E(gt ) that contains
the position hi (e), the underlying value gt is mapped to 1,
otherwise 0. In our CE-PPARS scheme, fzw−1···z1z0(x) is inter-
polated at nodes {(a, b) | a ∈ [0, 2w − 1]}, in which b = 1 if
a = �w−1

j=0 (2 j · z j ), otherwise b = 0. Here, z j is set to ∗ if
z j = 0, and ∗ could be 0 or 1. As a result, if e ∈ G(R), we have
fzw−1···z1z0(E(gt )) = E( fzw−1 ···z1z0(gt )) = E(1) for the group

E(gt ) that contains the position hi (e). If BF[hi (e)] = 0 for any
hi ∈ H, it means e /∈ G(R), and the corresponding group can
be mapped to 0, i.e., fzw−1···z1z0(E(gt )) = E( fzw−1···z1z0(gt)) =
E(0). Thus, e ∈ G(R) ⇔ E(θ) = �n

t=1 fzw−1···z1z0

(E(gt )) = E(1). �
b) Remark: Our CE-PPARS scheme can reduce the num-

ber of ciphertexts from 2d · η · k to � 2d ·η·k
w �. Although it

may incur extra computational costs in calculating polynomial
functions, the server S only needs to calculate at most l
polynomial functions for each bloom filter, where l is the
number of hash functions, i.e., l = |H|, and most of groups
will be ignored.

V. SECURITY ANALYSIS

In this section, we discuss the security properties of the pro-
posed PPARS and CE-PPARS schemes. Specifically, following
our design goals, we focus on how the proposed schemes
can preserve the privacy of query requests, query results, and
access patterns. Since both PPARS and CE-PPARS schemes
are built on our SDRD scheme, we will first prove the security
of the SDRD scheme and then discuss the privacy preservation
of our PPARS and CE-PPARS schemes.

Before delving into the detailed proofs, we briefly review
the security model for securely realizing an ideal functionality
in the presence of the static semi-honest adversary [16]. In our
models (Section II), since only the server S is semi-honest
(i.e., honest-but-curious), we will prove that our schemes are
secure against the server S.

Real world model: The real world execution of a scheme 

takes place in S and an adversary A, who corrupts S. Assume
that x indicates the input of 
 and y is the auxiliary input,
e.g., the length of ciphertexts. With the inputs of x and y, the
execution of 
 under A in the real world model is defined as:

REAL
,A,y(x)
def= {Output
(x), View
(x), y},

in which Output
(x) is the output of the execution of 
 with
the input x , and View
(x) is the view of S during an execution
of 
 with the input x .
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Ideal world model: In the ideal world execution, there is an
ideal functionality F for a function f , and S interacts only
with F . Here, the execution of f under simulator Sim in the
ideal world on input x and auxiliary input y is defined as:

IDEALF ,Sim,y(x)
def= { f (x),Sim(x, f (x)), y}.

Definition 4 Securityagainst semi-honestadversary: Let F
be a deterministic functionality and 
 be a scheme in S.
We say that 
 securely realizes F if there exists Sim of
PPT (Probabilistic Polynomial Time) transformations (where
Sim = Sim(A)) such that for semi-honest PPT adversary A,
for x and y, for S holds:

REAL
,A,y(x)
c≈ IDEALF ,Sim,y(x)

where
c≈ compactly denotes computational

indistinguishability.

A. SDRD Scheme Is Privacy-Preserving

First, we use Definition 4 to demonstrate that our SDRD
scheme can guarantee the security of the query request q and
the output δ of SDRD against S.

Theorem 1: The SDRD scheme securely computes the
dynamic reverse dominance relation in the presence of
semi-honest adversary A.

Proof: Here, we show how to construct the simulator.
Sim randomly chooses two data records {x�1,x�2} and a
query request q�. Then, Sim simulates A as follows: i) it
encodes q� into {G([0,q�i ]),G([q�i ,Ti ]) | i ∈ [1, d]} and
builds bloom filters {BF�i0, BF�iT | i ∈ [1, d]}; ii) it encrypts
each element in bloom filters with the encryption algorithm
of FHE, generating {E(BF�i0), E(BF� iT) | i ∈ [1, d]}; iii) it
generates α�i and β �i by determining the relations between
|x�2i − x�1

i | and |q�i − x�1
i | and further obtains {δ�1, δ�2, δ�}

with the logical expressions in Fig. 3(a); iv) it encrypts
{α�i , β �i , δ�1, δ�2, δ� | i ∈ [1, d]} with the encryption algorithm
of FHE, generating {E(α�i ), E(β �i ), E(δ�1), E(δ�2), E(δ�) | i ∈
[1, d]}; v) it outputs {E(BF�i0), E(BF�iT) | i ∈ [1, d]}
and {E(α�i ), E(β �i ), E(δ�1), E(δ�2), E(δ�) | i ∈ [1, d]} as
A’s ideal view. In the real execution, A receives {x1,x2,
E(BFi

0), E(BFi
T) | i ∈ [1, d]}, as presented in Section IV-B.3,

and obtains {E(αi ), E(β i ), E(δ1), E(δ2), E(δ) | i ∈ [1, d]}.
We can see that the semantic security of FHE scheme
guarantees that the views of A in the real and the
ideal worlds are indistinguishable. Specifically, i) A can-
not distinguish {E(BF�i0), E(BF�iT) | i ∈ [1, d]} and
{E(BFi

0), E(BFi
T) | i ∈ [1, d]}; ii) A cannot distin-

guish {E(α�i ), E(β �i ), E(δ�1), E(δ�2), E(δ�) | i ∈ [1, d]} and
{E(αi ), E(β i ), E(δ1), E(δ2), E(δ) | i ∈ [1, d]} due to the secu-
rity of FHE. Thus, our SDRD scheme can securely compute
the dynamic reverse dominance relation without leaking the
query request and the corresponding calculation result. �

B. PPARS and CE-PPARS Schemes Are Privacy-Preserving

In this section, we show that our PPARS and CE-PPARS
schemes can preserve the privacy of query requests, query
results, and access patterns against S.

Theorem 2: The PPARS scheme securely computes the
aggregate set AS = {st | 1 ≤ t ≤ k} without leaking query
requests and query results to S.

Proof: For the work process of the simulator, Sim simu-
lates A as follows: i) it randomly chooses a set of encrypted
bloom filters as query token QT� = {QT�qt

| 1 ≤ t ≤ k},
where QT�qt

= {E(BFi�
0 ), E(BFi�

T) | i ∈ [1, d]}; ii) it gen-
erates the dominating flag E(δ�) with the randomly selected
datasets; iii) based on E(δ�), it computes E( f �) and an aggre-
gate set E(AS�) = {E(s�1), E(s�2), · · · , E(s�k)}; iv) it outputs
{QT�q, E(δ�), E( f �), E(AS�)} as A’s ideal view. In the real
execution, according to Algorithm 4, A receives the query
token QTq and obtains {E(δ), E( f ), E(AS)}. We can see that
the semantic security of FHE scheme guarantees that the views
of A in the real and the ideal words are indistinguishable.
Specifically, i) A cannot distinguish QT�q from QTq as it
cannot distinguish FHE ciphertexts {E(BFi�

0 ), E(BFi�
T) | i ∈

[1, d]} from {E(BFi
0), E(BFi

T) | i ∈ [1, d]}; ii) A cannot
distinguish {E(δ�), E( f �), E(AS�)} from {E(δ), E( f ), E(AS)}
due to the semantic security of FHE ciphertexts. Thus, our
PPARS scheme can securely compute the aggregate set of
reverse skyline without leaking the query requests represented
by QTq and query results E(AS). �

Following [11], [26], we define the access pattern as the
information about which data points are selected as the reverse
skyline. Recalling our PPARS scheme (Section IV-C), the
encrypted flag E( fi ) is used to indicate whether a data point is
a reverse skyline point, i.e., if fi = 1, the corresponding data
point xi is a reverse skyline point, otherwise xi is not. Next,
we will prove that our PPARS scheme can hide access patterns
by illustrating the adversary cannot distinguish the encrypted
flags {E( fi ) | i ∈ [1, n]}.

Theorem 3: The PPARS scheme preserves the
access pattern privacy, i.e., S has no idea about
which data points are selected as the reverse
skyline.

Proof: Given a query point qt , Sim runs A by: i) gen-
erating QT�qt

= {E(BFi�
0 ), E(BFi�

T) | i ∈ [1, d]}; ii) computing
{E( f �i ) | i ∈ [1, n]} with Algorithm 4; iii) sending {E( f �i ) | i ∈[1, n]} to the adversary A. With the same query point qt , Sim
generates a new query token QTqt = {E(BFi

0), E(BFi
T) | i ∈

[1, d]}. Using the generated QTqt and the same approach,
a set of encrypted flags {E( fi ) | i ∈ [1, n]} can be computed.
Finally, {E( fi ) | i ∈ [1, n]} is sent to the adversary A.
Since { f �i | 1 ∈ [1, n]} and { fi | 1 ∈ [1, n]} are encrypted
with FHE and respectively computed from two query tokens
QT�qt

and QTqt that have different encrypted bloom filters,
the adversary A cannot distinguish {E( f �i ) | i ∈ [1, n]} from
{E( fi ) | i ∈ [1, n]}, although they are calculated from the
same query point qt . Thus, our PPARS scheme can make the
server S have no idea about which data points are selected as
the reverse skyline. �

Compared to the PPARS scheme, our CE-PPARS scheme
adopts the polynomial functions to calculate E(θu)(1 ≤ u ≤
|F(v)|). However, the elements in E(BF

i
π) (i ∈ [1, d] and π =

{0, T}) are still encrypted by FHE, and all operations are
conducted over encrypted data. Therefore, similar to the proofs
of the PPARS scheme, we can prove that our CE-PPARS
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Fig. 7. Computational costs of query token report phase. (a) varying with the number of query points k, d = 3 and l = 10; (b) varying with the number of
dimensions d, k = 4 and l = 10; (c) varying with the number of hash functions, l, k = 4 and d = 3.

scheme is also privacy-preserving. To save space, we omit
the details here.

VI. PERFORMANCE EVALUATION

In this section, we will experimentally evaluate the per-
formance of our proposed schemes and explore the impact
of different parameters. Recalling Section IV-C, our proposed
schemes mainly have three phases. Since the result recovery
phase only involves data decryption, we will focus on the
query token report phase and the privacy-preserving ARS
search phase in this section.

Note that we are the first to propose the privacy-preserving
ARS query schemes on the single server model, and the
existing privacy-preserving skyline related solutions cannot be
applied to address the problems in our PPARS scheme. See
the detailed analysis in Section VII.

Experimental Setting: All of our proposed schemes were
implemented with Java and executed on a machine with 16 GB
memory, 3.4 GHz Intel(R) Core(TM) i7-3770 processors, and
Ubuntu 16.04 OS. From Section IV, we know our proposed
schemes only require that the employed encryption scheme can
support addition and multiplication homomorphic properties.
As a result, any fully homomorphic encryption scheme, even
leveled homomorphic encryption schemes, can be employed
in our proposed schemes. Since the symmetric homomor-
phic encryption (SHE) used in [27]–[29] is quite efficient,
we adopted its public-key setting [29] as the cryptography
primitive in our proposed schemes. For the security para-
meters of SHE, we let k0 = 4096, k1 = 80, and k2 =
160 (see the details of these parameters in [29]). Note that,
as SHE is a leveled homomorphic encryption scheme, and
its maximum homomorphic multiplication depth is related
to k0, we can either adopt a bootstrapping protocol [28]
between S and C to refresh ciphertexts or enlarge k0 to support
more homomorphic multiplication operations. For simplicity
sake, here we set k0 = 4096 and adopted the bootstrapping
protocol to refresh ciphertexts. Regarding the dataset, in our
experiments, we used a real-world dataset that contains the
Airbnb data of Denver [30], denoted as Denver. In particular,
we first extracted the fields of number type, such as longitude,
latitude, and acceptance rate, and scaled them to integers.
Then, we filtered out the missing-value items. Eventually,
our Denver dataset has 2,547 items, and each item has ten
attributes.

A. Performance of Query Token Report Phase

Recalling Section IV-C.1, the client C sends QT||pk||H
to the server S, where QT = {QTqt | 1 ≤ t ≤ k}
and QTqt = {E(BFi

0), E(BFi
T) | i ∈ [1, d]} =

SDRD.TokenGen(qt , pk,H). Consequently, the computa-
tional costs of the query token report phase are related to the
number of query requests k, the number of dimensions d , and
the number of hash functions l.

1) Impact of the Number of Query Requests k: Fig. 7(a)
depicts the computational costs of query token report phase
varying with the number of query requests k. Intuitively, the
token generation time linearly increases with the number of
query requests k. Through a simple calculation (of the slope
of lines in Fig. 7(a)), we can obtain the average execution
time of generating the query token for one query request. The
results show that our PPARS scheme has the largest average
execution time around 126 ms, while our CE-PPARS scheme
takes 65 ms, 45 ms, and 31 ms when the packing window w
is 2, 3, and 4, respectively (we will analyze the reason at the
end of this subsection). As all of them are at the millisecond
level, our proposed schemes are efficient in generating query
token for one query request.

2) Impact of the Number of Dimensions d: Fig. 7(b) illus-
trates the computational costs of query token report phase
varying with the number of dimensions d . Similarly, all of
proposed schemes show a linearly increasing tread in this
figure. That is because when we add one more dimension to
the original query requests, our SDRD.TokenGen() algorithm
needs to generate two more encrypted bloom filters for each
query request. Therefore, as d increases, so does the execution
time of generating a query token.

3) Impact of the Number of Hash Functions l: Fig. 8(c)
plots the computational costs of query token report phase
varying with the number of hash functions l. In our
SDRD.TokenGen(q, pk,H) algorithm, one of the inputs is
the set of hash functions H. The more hash functions in H
indicates that we need to execute more hash functions to map
an element into a bloom filter. As a result, the token generation
time increases as the number of hash functions increases.

From the above three figures (Fig. 8(a), Fig. 8(b), Fig. 8(c)),
we know that our PPARS scheme has the worst performance
in the query token report phase, and when w increases, our
CE-PPARS scheme has a better performance. The reason is
that encrypting elements in the bloom filters accounts for most
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Fig. 8. Computational costs of privacy-preserving ARS search phase. (a) varying with the number of data points n, d = 3 and l = 10; (b) varying with the
number of dimensions d, n = 1000 and l = 10; (c) varying with the number of hash functions l, n = 1000 and d = 3.

of the time consumption in this phase. For each query token
QT, our PPARS scheme needs to encrypt 2d · η · k plaintexts
into ciphertexts. Whereas, our CE-PPARS scheme only needs
to encrypt � 2d ·η·k

w � plaintexts. The larger w means that fewer
plaintexts need to be encrypted. Thus, when w is larger, our
CE-PPARS has a better performance in generating the query
token. Meanwhile, comparing these three figures, we can see
that the number of query requests k has the largest impact
on the performance in this phase, followed by the number
of dimensions d and the number of hash functions l. That
is because we need to generate 2d bloom filters for a new
query request, while it is two bloom filters for each dimension.
Regarding l, when it increases, we do not need to increase the
number of bloom filters and only need to execute more hash
functions for generating bloom filters.

B. Performance of Privacy-Preserving ARS Search

From Algorithm 4, we know that the computational costs
of this phase are related to the number of data records n, the
number of dimensions d , and the number of hash functions.

1) Impact of the Number of Data Records n: Fig. 8(a)
depicts the computational costs of privacy-preserving ARS
search phase varying with the number of data records n.
As Definition 2 shown, given a data record xi and a query
request q, we need to check whether there exists another data
record x j in the dataset that dominates q with regard to xi .
Therefore, the computational costs of this phase quadratically
increase with the number of data records.

2) Impact of the Number of Dimensions d: Fig. 8(b) illus-
trates the computational costs of the privacy-preserving ARS
search phase varying with the number of dimensions d . When
n is fixed, we only need to check two more bloom filters in the
SDRD.Check() algorithm with the growth of d . As a result,
the computational costs of this phase linearly increase with
the number of dimensions.

3) Impact of the Number of Hash Functions l: Fig. 8(c)
plots the computational costs of the privacy-preserving ARS
search phase varying with the number of hash functions l.
Similar to the parameter d , the computational costs also
show a linear increasing trend when varying with l. This
is because we need to run l multiplications to calculate
E(θu) in our SDRD.Check() algorithm, i.e., E(θu) =�l

j=1 E(BFi
0[h j (eu)]). It is worth noting, in our setting, the

number of hash functions l is related to the bloom filter’s

false positive. When l = 10, f p ≈ (1/2)l = 0.1%, while
f p ≈ 0.0001% when l = 20. Therefore, we can set a
suitable l to guarantee an acceptable false positive for different
applications.

From the above three figures (Fig. 8(a), Fig. 8(b), Fig. 8(c)),
we know that, the CE-PPARS scheme has the worst per-
formance when w = 4, while our PPARS scheme outper-
forms other schemes. The reason is that we need to run the
interpolated polynomials over ciphertexts to calculate E(θu)
in our CE-PPARS scheme, and the largest degree of the
interpolated polynomial is 2w − 1. However, our PPARS
scheme only needs to run l multiplications to obtain E(θu).
Thus, our PPARS scheme has better performance than the
CE-PPARS scheme in this phase, and the larger w indicates the
larger computational costs. Notably, the skyline computation
is computationally intensive, especially for the fully secure
skyline query schemes. For example, the state-of-the-art secure
dynamic skyline query schemes [7]–[9] have computational
costs from 102 to 104 seconds for finding skyline points
with a similar parameter setting. However, these schemes
were designed for the two-server model, which naturally has
less computational costs (but requires a lot of communication
overhead) than the single server model under the same security
level. Therefore, as a kind of fully secure skyline query
scheme, our proposed schemes have acceptable computational
costs in the single server model, which is more practical and
does not incur additional communication overhead between
servers.

C. Communication Overhead

In this section, we explore the communication overhead
impact of different parameters. Here the communication
overhead indicates the size of query tokens delivered from
the client C to the server S. Since delieved bytes =
the number of ciphertexts ∗ the size of a ciphertext,
we will separately discuss the number of ciphertexts
and the size of a ciphertext as follows:
• the number of ciphertexts. As discussed in Section IV,

C sends 2d · η · k ciphertexts to S in our PPARS scheme,
while it is � 2d ·η·k

w � in our CE-PPARS scheme. It is clear
that the parameters d and k have a linear impact on the
communication overhead. To save space, here we only explore
the impact of the number of hash functions l, which is related
to η, and the packing parameter w on the communication
overhead.
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TABLE II

COMPARISON WITH EXISTING SECURE SKYLINE SCHEMES

Fig. 9. Communication overhead of encrypted query tokens varying with
the number of hash functions l.

• the size of a ciphertext. In our experiments, we use the
SHE technique, and each SHE ciphertext has 2 · k0 bits. Since
we set k0 = 4096, each SHE ciphertext has the size of 1KB.

Fig. 9 depicts the communication overhead of query tokens
varying with the number of hash functions l. From this figure,
we know that: i) the PPARS scheme has the largest commu-
nication overhead, and the communication overhead of our
CE-PPARS scheme decreases with the growth of w. That is
exactly the design goal of our CE-PPARS scheme as we reduce
the number of ciphertexts from 2d · η · k to � 2d ·η·k

w �; ii) with
the increase of l, the communication overhead increases. That
is because we can calculate η with l, i.e., η← �l ∗ m/ ln 2�,
where m is set as 2φ − 2, and φ is the maximum bit length
of the given query requests. Here, we set φ = 24 since it can
cover all query requests in our experiments.

VII. RELATED WORK

Skyline queries have a wide range of applications in many
domains. Due to the privacy concerns in the cloud comput-
ing, privacy-preserving skyline queries have been extensively
studied [7]–[10], [31]–[35].

A. Privacy-Preserving Basic Skyline Queries

The concept of the basic skyline query refers to the skyline
queries that do not involve a query point, which is relative
to the dynamic skyline query. In 2014, Bothe et al. [31] pro-
posed the first privacy-preserving basic skyline query scheme,
in which the skyline computation was transformed into the
non-descending series, and the matrix encryption was adopted
to encrypt them. However, this scheme is not secure since
the adversary can infer the secret key by launching the
known plaintext attack. Zaman et al. [32] designed a secure
skyline computation scheme in MapReduce. In this scheme,
the symmetric-key encryption (SKE) was used to encrypt

sensitive data, and a trusted party needs to be deployed to
obtain the order relation of data. In the e-Healthcare scenario,
Hua et al. [33] proposed a privacy-preserving skyline query
scheme to make remote diagnosis possible while protecting
data privacy. However, this scheme focused on basic skyline
computation and cannot protect the access patterns. In [34],
Zheng et al. presented a privacy-preserving skyline computa-
tion protocol over encrypted data. By using the Benaloh public
key encryption (PKE) [36], this scheme compares encrypted
data in a non-interactive manner. Similar to [33], the work
in [34] also dealt with the basic skyline computation and
revealed access pattern privacy.

In summary, all of the above privacy-preserving skyline
query schemes are aimed at the basic skyline queries. Since our
proposed schemes involve the query points and are a kind of
dynamic skyline query, the above schemes cannot be applied to
design the privacy-preserving reverse skyline query schemes.
Besides, the above schemes leak the access pattern privacy,
which must be preserved in our scenario.

B. Privacy-Preserving Dynamic Skyline Queries

We consider all the skyline queries involving query points
as dynamic skyline queries. In [10], Wang et al. proposed
a secure dynamic skyline query scheme by using the order
revealing encryption (ORE). Since the ORE scheme natu-
rally reveals the order relations of underlying plaintexts, this
scheme cannot fully protect the order relations for the out-
sourced data and may incur inference attacks [37]. In [35],
the authors employed a secure hardware (SGX) to securely
compute skylines. However, this work leaks access patterns
and needs additional hardware. Regarding the works in [7]–[9],
the authors respectively presented a secure dynamic skyline
query scheme by designing a collection of secure protocols.
Although these schemes can preserve the privacy of data
records, query requests, query results, and access patterns,
they were achieved in a two-server setting, in which two
semi-honest cloud servers interact with each other to compute
skylines. However, in our scenario, it is unreasonable to deploy
an additional server for secure skyline computation. Different
from the above privacy-preserving dynamic skyline query
schemes, our proposed schemes are designed for the single
server model and can ensure the privacy of query requests,
query results, and access patterns.

In Table II, we compare our proposed schemes with the
related works in terms of skyline query type, encryption
technique, access pattern privacy, and the single-server model,
in which Matrix indicates the matrix encryption, and HE
means the homomorphic encryption.
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VIII. CONCLUSION

In this paper, we have proposed a privacy-preserving aggre-
gate reverse skyline query scheme on a single server model,
denoted as PPARS. To our best knowledge, we are the first to
achieve the privacy-preserving ARS queries in a single server
model while ensuring full query privacy. In particular, we first
transformed the problem of aggregate reverse skyline query
into the set membership test and logical expressions. Then,
we introduced a prefix encoding technique to encode query
points and map the encoded set into a bloom filter. After that,
we encrypted the elements in the bloom filter with the FHE
scheme. By running the logical expressions over ciphertexts,
we obtained the encrypted aggregate values as query results.
To reduce the number of ciphertexts delivered between the
client and cloud server, we proposed our CE-PPARS scheme
with an interpolation-based packing technique. Finally, we for-
mally analyzed the security of our proposed schemes and
conducted extensive experiments to validate their efficiency.
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